

CASE STUDY

Construction

FLOOR SLAB

Location

Hungary

System boundary

production of building products (A1-A3)

transport to construction (A4)

maintenance and replacement, if necessary (B4-B5)

end of life (C1-C4)

Origin of data

Constructions: IS-SusCon project; Background data: OneClickLCA database, selection of the most representative datapoints for Hungary, see methodological details in the document "Hungarian building constructions"

FLOOR SLAB

Functional unit

1 m²

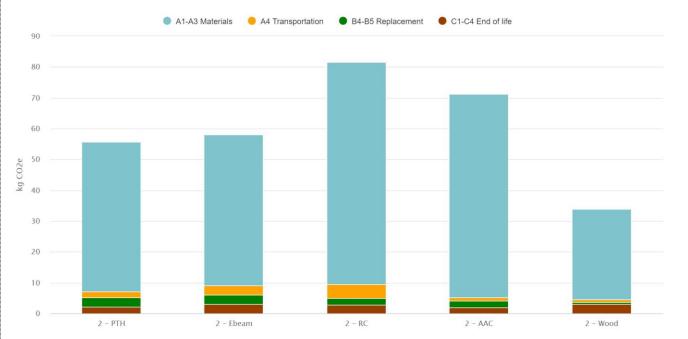
50 years building lifetime

painting in every 10 years

gypsum-lime plaster in every 30 years

Solutions:

olutions:				
short name	full name	top layer	inner components	down layer
РТН	Precast concrete beam	cement screed	concrete top layer	lime-cement plaster
	slab with ceramic	PE-foil	reinforcing steel mesh	wall paint
	cladding and ceramic	acoustic insulation	ceramic infill block	
	infill blocks, incl.		prefabricated concrete	
	acoustic insulation and		beam (C30/37)	
	screed		beam reinforcing steel	
			ceramic cladding of beam	
Ebeam	Precast concrete beam	cement screed	concrete top layer (C25/30)	lime-cement plaster
	slab with concrete	PE-foil	reinforcing steel mesh	wall paint
	infill blocks, incl.	acoustic insulation	concrete block (EB 60/19)	
	acoustic insulation and		precast concrete beam	
	screed		beam reinforcing steel	
RC	In-situ concrete slab,	cement screed	concrete (C25/30)	lime-cement plaster
	incl. acoustic	PE-foil	reinforcing steel bars	wall paint
	insulation and screed	acoustic insulation		
AAC	Aerated concrete	cement screed	aerated concrete floor	lime-cement plaster
	reinforced floor panel	PE-foil	panel	wall paint
	slab, incl. acoustic	acoustic insulation	reinforcing steel bars	
	insulation and screed			
Wood	Wooden joist floor,	cement screed	OSB board	gypsum board 2 layers
	incl. acoustic	PE-foil	wooden joist	wall paint
	insulation and screed	acoustic insulation	mineral wool thermal and	
			acoustic insulation	
			wooden battens	

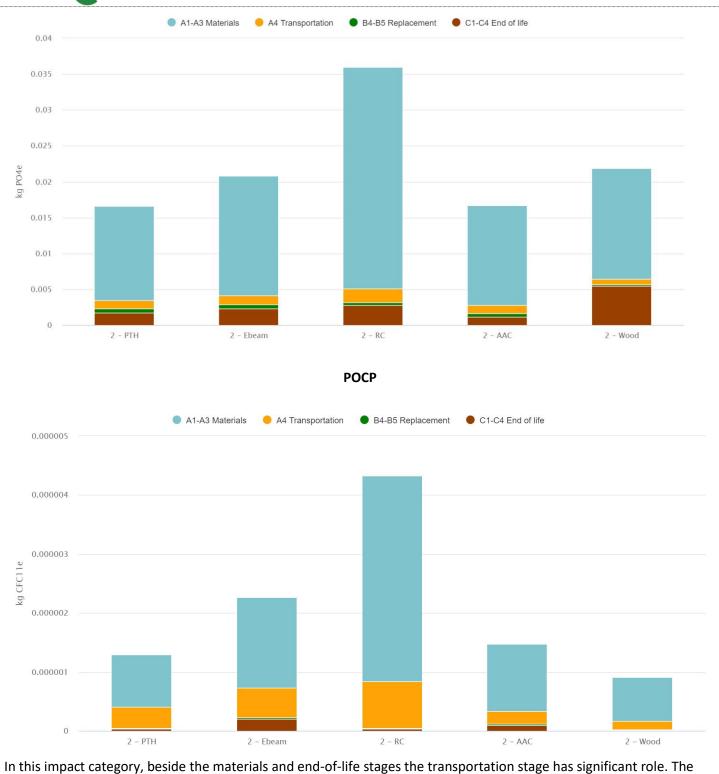


Impact assessment

Global Warming Potential (GWP)

In the most impact categories, the RC solution - In-situ concrete slab, incl. acoustic insulation and screed – has the highest impact compering with the other floor slab solutions.

- In the global warming potential the trends are same between them. The biggest impact enhancing stage is the production: materials (A1-A3) due to the environmental impacts of the concrete and mortar production.
- The RC solution In-situ concrete slab, incl. acoustic insulation and screed-is the highest due to the utilization of high amount of concrete and mortar.
- In case of Wood solution Wooden joist floor, incl. acoustic insulation and screed –, the influencer are floor screed mortar and cement screed. This solution gives the best environmental loading in this comparison.
- The roles of the other life cycle stages (replacement, transportation and end-of-life) are not significant.

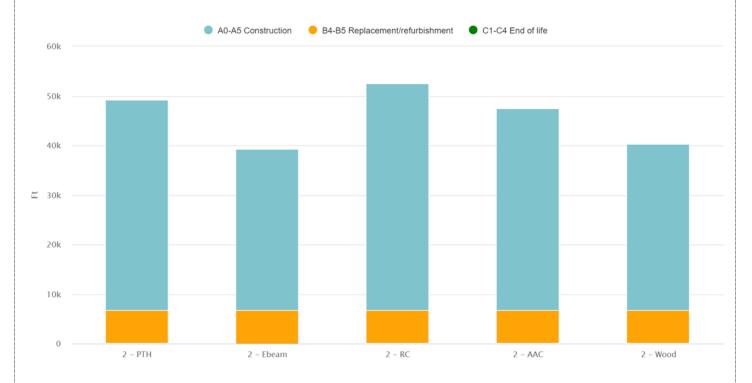

Other Hotspots

EΡ

- In this impact category, the RC solution also has the biggest impact on the environment.
- The sharing of the Wood solution Wooden joist floor, incl. acoustic insulation and screed is higher than in the GWP category, due to the growing of the end-of-life stage (C1-C4) – mainly due to the disposal of insulation system.
- The AAC solution Aerated concrete reinforced floor panel slab, incl. acoustic insulation and screed decreased due to the smallest impact of the material phase.

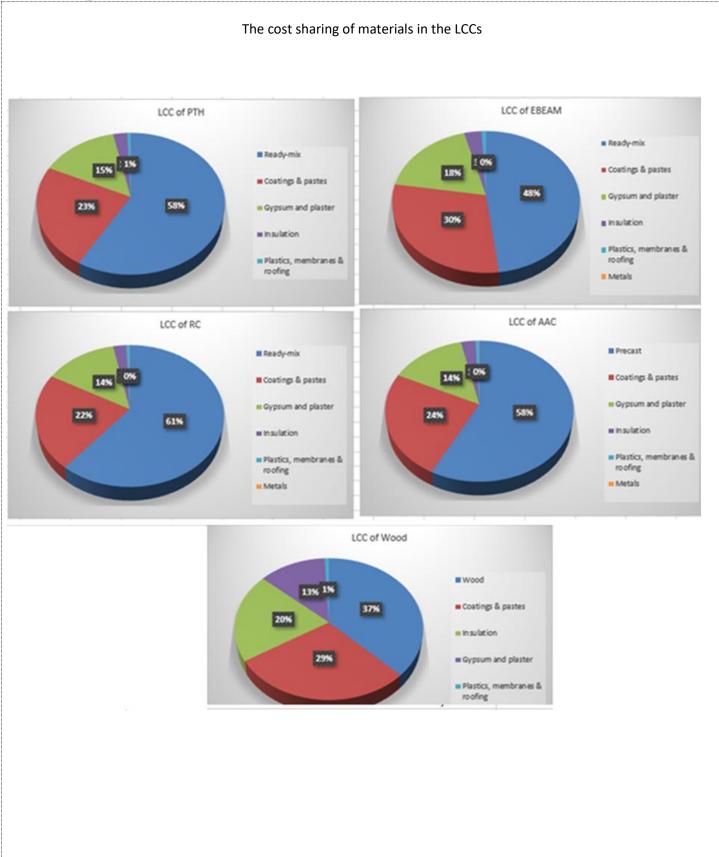
In this impact category, beside the materials and end-of-life stages the transportation stage has significant role. The results of this category were pointed, that growing the transportation distance causes higher environmental impacts.

*** * * ***



Cost

We analysed 5 designs of floor slabs. Life cycle cost analysis is just one test method that helps to select the structure of floor slab in addition to technical and environmental performances. These layer orders can be realized from the building materials available in the market.


The RC floor slab is the most expensive option. Ebeam floor slab and the wood floor slab have near the same LCC, they are with about 25 % cheaper than the RC. Also the PTH and AAC structures are about 10% cheaper than the RC floor slab. The replacement costs are the same in all cases. The cost of Eol stage is negligible.

The cost of materials represents a different proportion in each construction. The cost of concrete structures changes from 37% to 61%, plaster 13-18%, insulation 3-20%, air permeable membrane 1%, metal 0-1%, paint 22-30%.

